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AN EMPIRICAL INVESTIGATION OF SOME EFFECTS OF THE VIOLATION OF
THE ASSUMPTION THAT THE COVARIABLE IN ANALYSIS OF COVARTANCE
IS A MATHEMATICAL VARTABLE™

Dick S. Calkins
The University of Texas at El Paso
and Earl Jennings

The University of Texas at Austin2

In meny cases the analysis of data in behavioral research can be
accomplished through the formulation of a linear model which eprears to
represent the essential aspects of a suspected relationship between the
independent and dependent variables being investigated. In such a model
the data appear as varisbles and the statistics appear as constants which
are calculated from the data. VWhen certain mathematical procedures are
used for calculating the values of the statistics and certain assumptions
have been met concerning the selection and d.stridution of the values of
the variables in the vopulation from which the data were drawn, it can be
shown mathematically that the statistics are "good" estimetes of the para-
meters and that accurate probability stctements iuvolving possible differ-
ences in the parameters can be made. However, if the assumptions concern-
ing the selection and distribution of the velues of the variables in the
population are not met, it may be very difficult to show mathematically

how the estimates © the parameters and the probability statements involving

differences in the parameters will be affected. In some instences, the

lThis paper is partially besed on the Doctoral Dissertation of the

first author. The second author served as chairman of that dissertation
comnittee. |
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effects of the violation of these assumptions may be of small enough magni-
tude that they are of no practical significance. The magnitude of the
effects of the violation of such assumptions can be investigated empiriceally
by repeatedly sampling from populations of values with known characteristics
when the assumptions to be investigated are not met. This study was per-
formed to investigate the effects o9f the violation of one such assumption.

For the mathematical model which ié the basis for regression analysis,
it is necessary that the continuocus independent variables are mathematical
varisbles (in contrast to random variables) before it can be shown that
the statistics sre "good" estimates of the parameters or that the shape
of the sampling distribution of the statistics follows the normal distri-
bution (Greybill, 1961, pp. 195-200, 383-396). If the sempling distribu- ?
tions of the statistics are non-normal, the probebility statements involv- é
ing differences in the parameters may be inaccurate. The intent of this
study vas to investigate the effects produced for a particular family of
linear models which contain both continuous and binary coded independent
variables when the assumption that the continuous variables are mathema- :
tical. is not maintained. j
The Models

The linear models investigated can be utilized to alieviate a fre-
quently occurring problem in behavioral research. This problem arises
vhen an investigator desires to examine differences in existing grouvs
where the differences could be attributable to some quantifiable concomi- !
tant influence. In such a situation, the investigator would probably

b it A dnde s adiae e fans!

wvant to investigate possible differences in the performance of the groups
as measured by some dependent variable without regard to differences due
+0 the concomitant variable. A logical approach to this difficulty would
be to consider the joint frequency distribution for the dependent variable
and the concomitant variable for each group. Comparison of the Joint
frequency distributions for tae groups in effect makes possible the com-
parison of values of the dependent veriasble for individuals in the various
groups who have the same value for the concomitant variable.

Bottenberg and Ward (1963, pp. T6-86) present a family of linear models
which can be used to make these previously mentioned compsrisons in a more
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quantitative munner. The most general model of this family is written
Yid' aJ + bjxij + eiJ Model 1
wvhere YiJ is the value of the dependent variable, xiJ'is the value of the
conconitant veriable, and eiJ is the error associsted with use of Model 1
with the ith member of the Jjth group; j =1, 2, « . ., m where m is the
number of groups and i = 1, 2, « « .+, nJ where Eﬂ is the number of indivi-
duals in the jth group. (In this model it is assumed that within eny
popvlations from which the groups were selected, the expected change in
the value of the dependent variable per unit change in the velue of the
concomitant variable is constant over the range of the values of the con-
comitent variable.) The evaluation of the constants in this model from
the data produces a vuique value of a and b for each group. The value of
a and b for each group results from fitting a regression line to the joint
frequency distribution for the dependent variable and the concomitant
variable for each group. The values of & and b then represent the inter-
cept and slope of the regression line for each group. The determination
of whether the various groups differ on the dependent variable without
regard to differences due to the concomitant varisble can be made in terms
of the intercepts and slopes of the group regression lines.

Probability statements involving possible differences in the intercept
and the slope parameters for the populations from which the groups were
gselected can be made by calculation of a critical statistic which is a
function of the error sum of squares in Model 1 and in models derived in
particular ways from Model 1. Probability statements involving differ-
ences in the slope parameters for the populations from which the groups
were selected can be made on the basis of the value of a critical ratio
wvhich is a function of the error sum of squares (s) from Model 1 which
can be written |

m n
s=% 3,2
y=1 fm1 1

and the error sum of squares from a model derived from Model 1 which
restricts all of the values of group slope to the same value. This
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restricted model is written

YiJ & aﬁ + inJ + fiJ Model 2

where YiJ is the velue of the dependent variable, X.,.is the value of the

i)
i)

concomitant variable, and e,, is the error associated with the use of
Model 2 with the ith member of the Jjth group; J =1, 2, . . ., m wvhere o

is the number of groups and 1 = 1, 2, « + «, nJ where 25 is the number of
individuals in the Jth grouw)>. The common value of group slope is b and
the a's are the group intercepts. The error sum of squares (t) from
Model 2 can be written

g2y s £, 2.

J=1 i=1 v

Probability statements involving possible differences in the intercept
paraneters for the pooulations from which the groups were selected, assum~
ing that the slope parameters for these populations are egual, can be made
on the basis of the value of & critlcal statistic which is a function of
the error sum of squares (t) from Model 2 and the error sum of squares (r)
from a model derived from Model 2 which restricts all the values of group
intercept to the same velue. This restricted model is written

Y, =a+ X Model 3

i) 37 By

vhere YiJ is the value of the dependent variable, XiJ is tye value of the
concomitant variable, and eiJ is the error associated with the use of
Model 3 with the ith member of the jth group; j =1, 2, . « ¢+, mwvhere m
is the nuuber of groups and i =1, 2, « « nJ where Ej is the number of
individuals in the Jjth group. In Model 3, a is the value of the common
intercept for all the groups and b is the value of the common slope for
all the groups. The error sum of squares (r) from Model 3 cen be written

m n

r=3 s siae .
=1 i=
The extent of this research was to investigate the properties of

Models 1, 2 and 3 and the probability statements based on these models
when the concomitant variable was not a mathematical variable. The
comparisons made possible by the use of these models are essentially
those made in analysis of covariance.
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Mathematical and Random Variables

In the mathemetical treatment of a linear model which is necessary
in order to derive computing expression for the constants and the critical
statistics, an important consideration is the type of. variables which are
used in the model. The two types of variables-generally recognized by
mathematical statisticiens aere rsndom variables and mathematical variables.
The following definition of a random variable has been adapted from
" Alexander (1961).

If for a particular rundom experiment, {Al, P Ai} is the set of

outcomes (sample points) defining the sample space of the random

experiment, and if {xl, o o ey xk} is a set of numbers such that X,

is associated with the corresponding outcome Ai fori=1l, « « ¢ k

then the set of values {xl, . o os xk} is called a random variable

for the particular random exveriment.

'For a variable to be considered a mathematical or fixed variable,
the values assumed by the variable must be known constants; that is, the
values of a mathematical vériable must be pre-selected from the range of
possible values assumed by a random variable. For example, consider the
case where an investigator is interested in evaluating the relative effects
of an experimental curriculum and a control curriculum after the removal
of the unwanted influence of difference in initial performance. If the
investigator desired to treat his assessment of initial performance as a
?ixed variable in Models 1, 2 and 3, it would be necessary for him to
gelect certain values of initisl performance before he tested the pupils
and then to use in the analysis only the pupils who had those specific
values of initial performance. If he wished to treat initial performance
as & random variable in the models, he could simply assess the initial
performance of all the available pupils and use their scores regardless
of particuler values.

Another important consideration involving the variables which appear
in a linear model is concerned with the amount of error inherent in the
process of observation of the values of the variable. Whether a variable
is treated as fixed or random, the process by which the values of the
variables are observed usually introduces some error of measurement. The
relative magnitude of the error introduced by the measurement process is



generally used a priori to determine whether the observed values of a
variable will be treated in the model as measured with error or as error
free. For example, it would probably not be reasonable to conclude that
observed initial performance is an errorless assessment of & given sub—-
Ject's potential.

The mathematical derivation of the sampling distributions of the
estimates of the unknown parameters and the properties of the critical
retios for linear models involve both the type of the variables and
whether or not the variables are considered to be measured with or with-
out error. In the mathematical treatment of models of the same tyve that
are considered here, it is assumed that the X's are both fixed and measured
wvithout error (Graybill, 1961, pp. 103-104 and 383). Berkson (1950) has
shown mathematically that if the X values are fixed variables but measured
with error, the probability statements based on the critical ratio and the
éampling diétributions of the statistics are not effected. In considera-
tion of further comments by Graybill associated with the assumptions
underlying the various models and the associated mathematical development
of the models which do consider various cases where the X's ere treated
es random variables both with and without error, it becomes apparent that
a general solution to this problem is both difficult and unavailable.

There are instances in the patural and behavioral sciences when it is
no problem to design experiments such that a concomitant variable is a
fixed variable measured with very little error. For instance, if temper-
ature were considered to be a variable which was critically affecting the
comparison of yield in two or more manufacturing processes, all the pro-
cesses could be utilized a given number of times at pre-selected values of
temperature and then differences in the yields of the processes could be
evaluated using Models 1, 2 and 3 to make possible comparison of the yield
of the process with the effect of temperature removed. In the social
sciences, if practice in an experiment concerning the effects of rein-
forcement on performance were thought to influence the comparison of
verformance for the various reinforcement conditions, there would be
little problem involved in selecting certain amounts of practice and then
assessing performance for a certain number of individuals for each rein-
forcement condition at the selected amounts of practice. With amount of
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practice a fixed variable measured with little error, use of Models 1,

2 and 3 to compare the performance of the-various reinforcement conditions
with the effect of practice removed is in correspondence with the assump-
tions for these models.

Unfortunately, the use of Models 1, 2 and 3 in the educational example
wvhen the concomitant variable is fixed is not a very satisfactory procedure
because of the related problems of obtaiaing sufficient suvbjects who have
the necessary scores on the concomitant variable within the constraints
of the experimental situation. This problem is compounded by the diffi-
culty involved in obtaining relatively errorless values of the concomitant
variable. What usually occurs in actuel practice is that the investigator
ignores the requirement that the concomitant variable be fixed -and error
free and proceeds with the analysis as if this variable were fixed. The
purpose of this study was to investigate the effects of the failure to
meet these assumptions of the model when the X values are values of a
random veriable and are measured vithout error. This was accomplishad
by determining whether differences in the number of incorrect deeisions
based on the critical statistic for differences in the b's in Model 1 and
the ecritical statistic for differences in the a's in Model 2 occur when X
is a random variable rather than a mathematical variable. Also, compari-
sons vwere made between the distributions of the bd's in Model 1 and of the
a's in Model 2 when the X values were values of a random variable and
values of a mathematical variable. The case when the X values represent
values of a random varieble measured with error was not treated in this
study.

Metheds

In order to conduct this empirical investigation, computer vrograms
were written in FORTRAN to be run on the CDC 6600 Computer System at The
University of Texas at Austin. These computer programs, which are shown
ip Calkins (1971), allowed values of Y to be randomly selected from var-
ious bivariate populations having predetermined parameters for values of
X either fixed or randomly obtained. The specified characteristics of
the bivariate populations were the type of biveriate distribution and the
means and veriances of the X and Y marginal distributions. (In actuelity,



it was difficult to maintain constant variance when the X values were
fixed.) Factors of the investigation which were varied are number of
cases (X,Y pairs) sampled from each group, shape of the X marginal dis-
tribution from which values of X were selected, and the variance of the
Y values in each X array. The principal statisties which were observed
are the distributions and expected values of the a's and b's, and the
critical statistics based on possible differences in the a's and b's.
In general, the X and Y marginal distributions of the bivariate
frequency distributions had means of 50.0 and standard deviations of
10.0, and correlations of 0.15, 0.30, 0.45, 0.60, 0.75 and 0.90 were
used to determine the variance of the Y values for easch X array. Sam-
Ples of size five, 13 and 39.were used in experiments of 1,000 samples.
The shapes of the X marginal distributions which were used are normal
distributions and rectangular distribtuions. The corresponding typeé
of bivariate distributions which were used are bivariate normal and the
values of Y normally distributed for each value of X used but with all
the Y arrays having equal variance.
Measurement of the Effects

Critical features of the various sampling distributions of the sta-
tistics were used to compare the effects of fixed and random selection
of X values. The distributions of the a's and the b's were compared
with their counterparts through the use of functions of the first four
cumulative moments of their respective distributions. These statistics --
mean, variance, skewness and kurtosis ~- were calculated using the com-
puting expressions from Fisher (1958). It was expected that these statis:
tics would closely approximate the population values.

The F statistic is the critical statistic vhich was investigated.
The F statistic upon which decisions concerning possible differences in
the b's or slopes in Model 1 was denoted F, , and the F statistic upon
which decisions concerning possible differences in the a's or intercepts
in Model 2 was denoted Ea. A concise presentation of a p:ocedure for the
caluculation of values of these statisties was adapted from Bottenberg
and Ward (1963, pp. 76-86), although for the actual computations of these
values, computing expressions from Winer (1962, pp. 578-588) were used.
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Since in this study all the samples for the groups were drawn from
the same population, the exvected values of F_ should be near d.f2/ (clf2 - 2)
end F should be near dfh/(dfh - 2). Also, not more than five vercent of
the ¥alues calculated for Fa. and Fb should be equal to or greater than the
specific values of the central F distribution for the proper degrees of
freedom at the .05 confidence level. Departure from what is exvected for
either of these criteria would indicate that the walues of the critical
statistic are not F distributed, although the latter c¢henk is the more
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important, since departure from what is expected would upset the decision
rule.

Sampling Procedure:

In Monte Carlo studies such as this one, where sampling must be done
from a Joint frequency distribution representing a population of indivi-
duals, problems concerning efficient computer usage arise because large
blocks of computer storage would be required to contain the frequency
distribution. For this reason and other aspects of efficiency, actual
frequency distributions were not used in this study. Instead of actually
sampling from existing frequency distributions, random deviates were
generated using computer programs based on pseudo random numbers such that
these random deviates simulated sampling with replacement from distribu-
tions with desired characteristics.

The source of pseudo random numbers for this study was RANF3, a
FORTRAN function, which is available through the CDC 6600 computer system
and documented in the computation center User's Manual of The University

of Texas at Austin. The slgorithm by which these pseudo random numbers
were generated avpears sufficient, for the purposes of this study, to
consider the pseudo random numbers to be random. This function was
utilized such that the same sequence of random numbers was used in each
experiment.

The random numbers generated by RANF were used in two other functionms,
RNORMD and RANREC, to generate numbers which were random deviates of &
normally distributed variable with a specified mean and variance in the
case of RNORMD and random deviates from a rectangulerly distributed
variable with a specified mean and variance in the case of RANREC.

3Actually these so~-called pseudo random numbers from RANF can be

viewed as random samples from & continuous rectangular distribution wvhich
is defined only over the range zero to one. For purposes of this study
deviates are defined to be random samples from distributions with speci-
fied characteristies which differ from the characteristics of the distri-
bution inherent in RANF. Thus the numbers obtained from RANF are called
random numbers and all numbers used in this study which are functions of
the numbers obtained from RANF are called random deviates.
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The random deviates from RNORMD and RANREC were used to produce
numbers which were themselves rendom deviates from bivariate frequency
distributions. (In the following discussion of the procedure used in the
generation process, it mey be helpful for the reader to refer to Figure 1.)
Random deviates for a bivariate normal frequency distribution were generated
by first obteining e random normel value of X from a univariate distribu-
tion with a mean of 50.0 and a standard deviation of 10.0 by using RNORMD.
The corresponding Y value is a random deviate from a normal distribution
vith a mean equal to the predicted value of Y for the particular value of
X and & standard deviation which is the stadard error of the estimate
(Syx = S&Jl - r&xﬁ) for predicting Y from a knowledge of X. This randem
value of Y was thus generated by again using RNORMD to obtain a randoem
normal deviate from a distribution with a mean equal to A + BX and a stan-
dard deviation equal to Syx where X is the previously generated deviate
~-and A, B and Syx are values calculated from the varameters specified for
the bivariate frequency distribdution. This vair of X and Y values then
represents a random deviate from a bivariate normal frequency distribution
wvith specified X and Y-univariate means and standard deviations and
bivariate correlation.

For the case where it is necessary to obtain deviates from a bivariate
normal frequency distribution for normally distributed bdut fixed values of
X, the procedure for the generation of the Y values was the same as for
generation of the random values of X but the procedure for obtaining the
X values was different. Thirteen fixed values of X were chosen. These
values were the mean of the X marginal distribution and six equally spaced
values above and below this mean. The spacing of these values was deter-
mined in terms of the value of the standard deviation of the X marginal
distrivution such that these 12 values wvere equal to the mean vlus or minus
.5, 1.0, 1.5, 2.0, 2.5, and 3.0 times the standard deviation. The fre-
quency of occurrence of each of these fixed values was used to determine
the shape of the X marginal distribution. In order that the X marginal
distribution be normally distributed, values of the probability function
of the normal curve were obtained from a 2 score table using the X values

in z score form as arguments. Since the height of the probability function
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Calculate M x (the mesn of the
pdrt

Y's for a leular value of X)
: My = X + B+ A

y
Ovtaln a value for Y which Is a random deviate distributed normally
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Figure 1. Flowchart showing the methods for obtalning the X and Y values
tor each ot rhe varlous configurations of the bivarlate frequency distributions.
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of the normal curve for a particular z score can be interpreted as a

proportion of the total number of cases occurring for that 2z score, the
pumber of cases needed for any value of X for this particular selection

of 13 2 scores can be obtained by multiplying one-half the desired sample
size by the height of the probability function of the normal curve for
thet X in 2 score units. The Y value corresponding to this velue of X
was then generated as in the random bivariate normal case. This pair of
X and Y values then represents a Geviate from a bivariate normal frequency
distribution based on a fixed value of X.

For the case where it is necussary to obtain deviates from a bivar-
iate fregquency distribution for rectangularly distributed values of X
but for the Y velues normally distributed for each value of X, agein the
procedure for the generation of the Y values is the same es in the two
previous cases. The rendom velues of X were obtained by using RANREC to
generate rendom deviates from a rectangular univariate distribution with

a mean of 50.0 and a standard deviation of 10.0. The rectangularly dis-
tributed velues of X were obtained in a manner analogous to'the procedure
previously described for obtaining normally distributed fixed values, except
thet in the rectangular case a rectangular vrobability function was util-
ized rather than the probability function for the normal curve.

However, it should be noted that when this procedure for bvoth normal
and rectangular distributions is used to establish the frequency of occur-
rence of the fixed X values, it is difficult to maintain both the system
of intervals between the 13 fixed values of X and a given standard devia-
tion of the X velues. For this reason, in the fixed case the intervals
between the fixed X values were maintained and the standard deviations
of the X marginal distribution for different sample sizes were allowed to
vary. For fixed but normally distributed values of X, the standard devie-
tion of the X values was T7.07 for sample size five, 8.55 for sample size
thirteen and 9.47 for sample size thirty-nine. For fixed but rectangularly
distributed values of X, the standard deviation of the X values was T7.07
for sample size five, 18.71 for samvle size thirteen and 18.71 for samvle
size thirty-nine.
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The remainder of the procedure for all cases consistea of generating
the necessary number of X,Y pairs with the appropriate characteristics
for the desired number of cases per, group, accumulating the various sums,
sums of squares and sums of products and then utilizing these figures in
the computing formulas to produce sample values of the slope, intercept,
standard error of slope and intercept, and eritical statistics foo the
slope and intercept. This entire procedure was then repeated one thousand
times in order to obtain sampling distributions for the slope, intercept,
and the critical statistics of the slcpe and intercept.

Results

The results are presented in Tables 2 through T. Tables 2 and 3
represent the results of the experiments involving the investigation of
the effects of violation of the assumption that the concomitent varieble
is a fixed or mathematical variable. Table 1 presents the legend necessary
to interpret Tables 2 and 3. Tables L through T were prepared from the '
information contained in Tables 2 and 3 to aid in the interpretation of
Tables 2 and 3. ' '

Table 1 is an explication of the two and three letter codes which
identify the various statisties reported for each experiment shown in
Tables 2 and 3. It should be noted that the rcported statistics for each
experiment contain both expected and observed values pertaining to inter-
cept and slope. The first zét o five statistics refers to various
expected and observed values of the distribution of slopes and the second
set of five statistics refers to the same values of the distribution of
intercepts. The next three statistics refer to various observed and
expected values of the critical ratio related to differences in slope and
the next three statisties refer to the same values except that they relate
to differences in intercept.

Tables 2 and 3 show some of the expected and obtained values of the
distributions of slope, intercept and eritical statistics of the slove and
intercept for the two types of bivariate distributions. The X's were
selected with both fixed and random values for six values of standard
errors of estimate based on the values of correlation shéwn for three
sample sizes and two grouvs. Tables 4 through 7 contain summary infor-
mation from Tables 2 and 3 concerning the discrepancy between the observed
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Table 1 >

Legend of Alphabetic Codes Needed to Interpret Tables 3 through 7

the expected mean of the theoretical sampling distribution of slope values which
is calculated from the specified parameters by s]ope = . S

-?T__——“y

X
where r is the specified correlation

Sy is the standard deviation of the Y marginal distribution

Sy 1s the standard deviation of the X marginal distribution.
the mean of the distribution of observed values of slope
the standard deviation of the distribution of the observed values of slope
the skewness of the distribution of the observed values of slope
the kurtosis of the distribution of the observed values of slope

the expected mean of the theoretical sampling distribution of intercept values

which is calculated from the specified parameters by intercept = Mx - s]ope My

where Mx is the mean of the X marginal distribution

where My is the mean of the Y marginal distribution.

the mean of the distribution of the observed values of intercept f
the standard deviation of the distribution of the observed values of intercept

the skewness of the distribution of the observed values of intercept

the kurtosis of the distribution of the observed values of intercept -EE

the number of observed F values based on differences in slope which are greater
than the specified value of the central F distribution for the proper degrees
of freedom at the .05/.01 confidence level

the expected mean of the central F distribution for the proper degrees of
freedom for differences in slope

the mean of the observed distribution of F values based on difference in slope
the number of observed F values based on differences in intercept which are
greater than the specified value of the central F distribution for the proner
degrees of freedom at the .05/.01 confidence level.

the expected mean of the central F distribution for the proper degrees of freedom
for difference in intercept

the mean of the observed distribution of F values based on differences in
intercept
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TABLE 4

VALUES AND MEANS FOR THE DISCREPANCY BETWEEN THE EXPECTED AND OBSERVED VALUES FOR SLOPE
CONSIDERING POSSIBLE EFFECTS DUE TO DISTRIBUTION SHAPE, SAMPLING PROCEDURES, STANDARD ERROR OF ESTIMATE
AND SAMPLE SIZE

Sl N el T TR

SAMPLING PROCEDURE

FIXED

g1

RANDOM
VALUES OF STANDARD ERROR OF ESTIMATE BASED ON THE CORRELATIONS SHOWN
“MEAN FOR "MEAN FOR
.1500  .3000 .4500 .6000 .7500 .9000 oo rocroe +1500 .3000 .4500 6000 7500 .9000g,Ci: &
(48]
m 5 |.0378 | -.0366 | -.0340 | -.0315 | -.0249 | -.0164 | -.0302 .0055 | .0038 | .0050 | .0042 | .0033 | .0027 | .0041
£ 13 |-.0039 |- .0035 | -.0038 | -.0036 | -.0020 | -.0017 | -.0031 .0144 | .0138 | .0132 | .0148 | .0095 | .0063 |.0120
m m% 0019 | -.0020 | -.0018 | -.0007 | -.0013 | -.0009 [ -.0014 .0047 | .0046 | .0043 | .0036 | .0034 | .0019 |.0037
2 MEAN FOR
2 sTaNDARD }.0145 | -.0140 | -.0132 | -.0119 | -.0094 | -.0063 .0082°| .0074 | .0076 | .0075 | .0054 | .0036
1 ERROR OF
m. ESTIMATE
- MEAN FOR NORMAL
= DISTRIBUTION -.0116 .0066
"
1“ m 5|.0005 | .0003 | .o084 ) .0072| .00681 .0044 | .0076 .0117 1.0126 | .0107 | .0104 | .0093 | .0054 |.0100
2 2 13 |.0002 | .0093 | .0080 | ..0074 | .0069 | .0041 | .0075 .0035 | .0034 | .0032 | .0027 | .0024 | .0015 |.0028
m < 20| .0084 | 0079 | .0075| .0071 ] .0056 | .0036 | .0067 .0001 |.0002 }.0001 [ .0000 |-.0001 |-.0001 |.0001
S MEAN FOR :
mm;zgzc 0090 | .0088 | .0080| .0072 | .0064 | .0040 0050 |.0053 | .C046 | .0044 | .0039 | .0023
£ ERROR OF
&3 ESTIMATE
MEAN FOR RECTANGULAR
DISTRIBUTION .0073 .0042
N
i




TABLE 5

LTIV N

NN Qe e T ST s s s a e

I s T e N

VALUES AND MEANS FOR THE DISCREPANCY RETWEEN THE mwvmnemc AND OBSERVED VALUES OF INTERCEPT

CONSIDERING POSSIBLE EFFECTS DUE TO DISTRIBUTION SHAPE, SAMPLING

VALUES OF STANDARD ERROR OF

RANDOM

AND SAMPLE SIZE

SAMPLING PROCEDURE

FIXED

ESTIMATE BASED ON THE CORRELATIONS SHOWN

PROCEDURES, STANDARD ERROR OF ESTIMATE

MEAN FOR MEAN FOR
.1500 .3006 .4500 .6000 .7500 ..9000 . p croe -1500 .3000 .4500 .6000 .7500 .9000 comrcrzE
m 5| .4086| .4001| .3411] .3509| .2556) .1709} .3212 -.1794 {-.0857]-.1191|-.1024|-.0754{-.0713 |-. 1055
(73]
w 13| .1605) .1317| .1321| .1221f .0592 .0504| .1093 -.7188|-.6872|-.6610{-.5819|-.4608 |-.3049 |-.5691
e
w 39) .1338] .1300} .1734] .0667] .0861} .0579} .1012 -.2333}-.2259}-.2082}-.1759}-.1641|-.0936 |-.1835
= MEAN FOR| .2343} .2236| .1989} .1799| .1336| .0931 -.37721-.3320{-.3294|-.2867{-.2334|-.1566
&2 STANDARD
. 2 ERROR OF
m ESTIMATE
% MEAN FOR NORMAL
z DISTRIBUTION 1772 --2860
m
m m 5{-.6174 |-.5008 |-.5116} -.4436| -.3652|-.2187]-.4579 -.6001|-.6402]-.5178|-.4927|-.4293}-.2300|-.4865
e (vs]
m m 13|-.5970|-.6074 |-.5461| -.5041 -.4583) -.2844]-.4996 -.1626}-.1568|-.1463]-.1179|-.1018{-.0643{-.1249
[a ] -
m % 391-.3595[-.3439(-.3319|-.3266| -.2598| -.1749|-.2994 .0065{ .0120| .0054| .0068| .0109( .0093( .0085
@ MEAN FOR :
Z oTANDARD |- 5246 |--5140|-.4632] -.4248) -. 3611 -.2260 ~.25511-.2617]-.2196|-.2013| .1734| .0950
G ERROR OF |
& ESTIMATE .
MEAN FOR RECTANGULAR m
DISTRIBUTION -.4190 -.2010
-
O
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TABLE 6 mw

VALUES AND MEANS FOR NUMBER OF OBSERVED F VALUES SIGNIFICANT AT THE .05/.01 LEVEL
BASED ON DIFFERENCES IN SLOPE CONCERNING POSSIBLE EFFECTS DUE TO DISTRIBUTION SHAPE, SAMPLING PROCEDURE.
STANDARD ERROR OF ESTIMATE AND SAMPLE SIZE

SAMPLING PROCEDURE

RANDOM FIXED

VALUES OF STANDARD ERROR OF ESTIMATE BASED ON THE CORRELATIONS SHOWN
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TABLE 7

VALUES AND MEANS FOR NUMBER OF OBSERVED F VALUES SIGNIFICANT AT THE .05401 LEVEL
BASED ON DIFFERENCES IN INTERCEPT CONCERNING POSSIBLE EFFECTS DUE TO DISTRIBUTIZN SHAPE, SAMPLING
PROCEDURE, STANDARD ERROR OF ESTIMATE AND SAMPLE SIZE

SAMPLING PROCEDURE

RANDOM FIXED

VALUES OF STANDARD ERROR OF ESTIMATE BASED ON THE CORRELATIONS SHOWN
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and expected mean values of the distributions of intercept and slove and

the number of observed F values based on differences in interceot and
differences in slope significant at the .05 and .0l levels.

Although there usually avopears to be some discrepancy between what
is observed and what is expected in Tables 2 through 7, these discrepan=~
cies are generally of a small megnitude. Some results detectable in
these tables are outlined below.

A. Effects on the moments of the distributions of intercept and slove

1. Discrepancies between what is expected and observed for the
mean velues of the distributions of slope shown in Tables

2, 3and 4

a. Distribution shapre and sampling procedure avpear to be
related to ﬁhe discrepancy of the slope in e complex
manner. The random normal case tends to over-estimate
the population slope with.the highest absolute discrepancy
vhile the random rectangular, fixed normal and fixed rec-
tangular cases tend to underestimate the'populétion
slope in the above order of increasing absolute discrepancy.

b. Sample size appears to be related to discrepancy for
slope with smaller absolute discrepancy associated with
larger sumple size except for the fixed normal case for
sample size thirteen.

¢, Standard error of estimate apvears to be related to
discrepancy for slope with least absolute discrepancy
occurring with smaller values of standard error of
estimate (higher correlation).

2. Discrepancies between what is expected and observed for the
mean values of the distributions of intercept shown in

Tables 2, 3 and 5.

a. Distribution shave and sampling procedure acvrear to be
related to the discrepancy of the intercepots in a com-
rlex manner. The random normal case tends to underesti-
mate the population intercept with the lowest absolute
discrepancy while the fixed rectangular, the fixed
normal and random rectangular csses tend to overestimate
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the population intercept in the above order of increasing
absolute discrepancy.

Sample size appears to be related to the discrepancy for
intercepts with smaller absolute discérepancy associated
with larger sample size except for the fixed normal case
for sample size thirteen.

Standard error of estimaie apoears to be related to dis-
crepancy wvith least absolute diserepancy occurring with
the smaller values of standard error of estimate (higher
correlation). '

Discrepancies between what is expected and observed for the
skewness and kurtosis of the distributions of intercept and
slope shown in Tables 2 and 3

a.

The skewness and kurtosis of the distributions of inter-
cept and slope only appear to differ substantially from
what was expected for the randon case for samp.e size
five. For this case the skewness and kurtosis appear

to be related to the values of standard error of esti-
mate with larger values of skewness and kurtosis associ-
ated with lower values of standard error. The same effect
also appears to a smaller degree for the random case when
the sample size is thirteen.

Effects on the discrepancy between the observed and expected
mean values of the distributions of F values for intercept and
slope shown in Tables 2 and 3

1.

The discrepancies between what is expected and observed do

not appear to be systematically related to

a.
b.
C.

Distrivution shave or sampling procedure
Samnle size
Value of standard error of estimate

The effects on the critical statistics for decisions concerning

differences in slope and intercept

1.

Diserepancies between what is expected and observed for the

number of F values based on differences in slope significant

24
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at the .05 and .0l levels shown in Tables 2, 3 and 6

a. Distribution shape and sampling procedure apvear to de
related to the number of observed F values significant
at the .05 and .0l levels in a compléx manner. At the
.05 level, the order of average highest occurrence and
percent of error relative to the expected value of
fifty is random normal (15% error), fixed rectangular
(8% error), fixed normal (3% error), and random rectan-
gular (9% error). At the .0l level the order of highest
average occurrence of the F values and percent error
relative to the expected value of ten is fixed rectan-
gular (31% error), rendom normal (4% error), fixed
normel (5% error), and random rectangular (10% error).

b. Standard error of estimate does not aprear to be sys-
tematically related to the number of significant F values
at the .05 and .0l levels. _

c¢. Sample size does not avpear to be systematically related
to the number of significant F values at the .05 and .0l
levels.

2. Discrepancies between what is expected and observed for the
number of F values based on differences in intercept signi-
ficant at the .05 and .0l levels shown in Tables 2, 3 and T
a. Distribution shape and sampling procedure appear to be

related to the number of observed F values significant

at the .05 and .01 levels in the following manner. At

the .05 level, the order of average highest occurrence

and percent error relative to the exmected value of fifty

is random normal (14% error), random rectangular (6% error),
fixed normal (5% error), and fixed rectangular (17 error).
At the .01 level, the order of average highest occurrence
and percent error relative to the expected value of ten

is rendom normal (7% error), random rectangular (1% error),
fixed normal (2% error), and fixed rectangular (9¢'e:ror).
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b. Standard error of estimcte does not appear to be
systematically related to the number of significant
F values at the .05 and .0l levels. .
c. Sample size does not appear to be systematically related
| to the number of significant F values at the .05 and .01
levels.

In summery, one may say that although few of the observed values are
exactly the ones expected, generélly these differences are of small mag-
pitude. The difficulties which were predicted concerning non-normality
of the distributions of intercept and slope for the random case do appear
for small sample sizes. However, the critical features of intercept and
slope do not appear to be different enough from what is expected to merit
concern for practical purposes. Also the lack of normality does not seem
to cause 8 sufficient increase in the number of type ome errors for deci-
sions about differences.in intercepts and sIOpes.to merit concern for
practical purposes. o |

Conclusions

In the mathematical treatment of linear models, certain of the
independent variables are assumed to be fixed variables (Graybill, 1961).
When this assumption is made, it can be shown that the computed estimates
of the parameters occurring in the models have the desirable characteris=-
tics that they are "good" estimates and are normally distributed.

It is often convenient to overlook this assumption when linear
models are utilized in a research situation, since the nature of a variable
. often does not allow the researcher to select cases with particular values
of a variable without discarding large amounts of data. This empirical
study was undertaken as an attempt to discover the effects produced for
the computed statistics and for the decisions made on the basis of a
eritical ratio concerning differences in these statistics for a particular
family of linear models when certain independent variables are not fixed
variables.

The assumption that certain independent variables have fixed values
can be violated in one or both of two ways: (1) the researcher can fail
to pre-select values of the variables which will be found in the data

26



26
and utilized to estimate the statistics, and/or (2) measurement error can
be introduced through the process of cobserving the values of the indepen-
dent variables. Berkson (1950) has shown that if for certain linear
models the values of the independent variables are oniy allowved to assume
fixed values, the values of these variables can be observed with error
without disturbing the mathematically desirable distributionsl character-
istics of the estimates of the unknown parameters. The present study
focused on the effects produced for only one of the two cases of violation
of this assumption for which no mathematical solutions are available.

The case investigated occurs when certain independent variables are not
fixed but are observed without error.

The particular fanmily of linear models investigated are a set
presented by Bottenberg and Ward (1963, pp. T6-86), who apply them to
problens generally approached by the use of the technique of analysis .
of covariance. The estimable terms in these models represent the esti-
mates of the parsmeters of intercepts and slopes of group regression lines.

This study investigated the following consequences of the devartures
from the assumption for versons doing research: (1) the estimates of the
slope end intercept parameters are not "zood," (2) the distributions of
the values of these estimates are non-normal, and/or (3) the number of
erroneous decisions concerning differences in the estimates are greater
than expected. . '

Some difficulty was encountered in interpreting the results of this
study because differences between what is observed and what is exvected
may be due to sempling fluctuation or to systematic fluctuation of a
subtle nature caused by varying the various factors in the experiments.
The results are probably not rigorous enough to please a mathematical
statistician. However, these discrepancies were of a small enough
magnitude and the values selected for the various factors were probably
general enough that the results are of practical value.

In general, the results of this study indicate that the violation of
the assumption that the independent variable is fixed does not produce
enough disparity between what is expected and what is observed for any
of the previously mentioned consequences to be a problem for persons
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doing research. Thus it seems reasonable to conclude that for this set
of linear models, within the confines of the values of the factors selected
for this study and for sample sizes not too small (in the neighborhood of
thirteen and greater), the effects of the violation of the assumntion that
the independent variable is fixed present little or no problem for

researchers.
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